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Abstract

A robust optimization method is developed to

overcome point-optimization at the sampled design

points. This method combines the best features from

several preliminary methods proposed by the authors

and their colleagues. The robust airfoil shape

optimization is a direct method for drag reduction over

a given range of operating conditions and has three

advantages: (1) it prevents severe degradation in the

off-design performance by using a smart descent

direction in each optimization iteration, (2) it uses a

large number of spline control points as design

variables yet the resulting airfoil shape does not need to

be smoothed, and (3) it allows the user to make a trade-

off between the level of optimization and the amount of

computing time consumed. For illustration purposes,

the robust optimization method is used to solve a lift-

constrained drag minimization problem for a two-

dimensional (2-D) airfoil in Euler flow with 20

geometric design variables.

Introduction

Multidisciplinary design optimization (MDO) is

increasingly important to the aerospace community 1.

For example, Giesing and Barthelemy organized a pair

of sessions at the 7al AIAA Multidisciplinary Analysis

and Optimization Symposium addressing the uses of

MDO in industry. The industry representatives

provided many examples of successful MDO

applications but also produced a list of new methods

that are required by industry. This paper addresses one

of those emerging areas: robust design or optimization

under uncertainty. In particular, this research evaluates

optimization methods for producing solutions that are

insensitive to variability in input parameters.

The need for robust design methods appears in many

contexts. During the preliminary design process, the

exact value of input parameters is not known. It may

be possible to make an educated guess or provide

bounds for these unknown parameters, but they are not

deterministic quantities. Faced with uncertain

parameters, traditional optimization techniques tend to

"over-optimize." Like the single-point optimization

represented by the solid line in Fig. 1, these techniques

produce solutions that perform well at the design point

but have poor off-design characteristics. Industry

favors designs that have room to grow 2. Industry

requires designs, such as the robust optimization

represented by the dashed line in Fig. 1, that can be

adapted to new missions or new business climates.

The present research seeks optimization methods that

are robust in the sense that they produce solutions

insensitive to changes in the input parameters.

Furthermore, the methods must be able to find

solutions by using a moderate number of high-fidelity

disciplinary analyses. This second requirement

acknowledges the fact that disciplinary analyses (e.g.,

computational fluid dynamics (CFD)) can be

computationally expensive; an optimization method

that requires thousands of function evaluations has

limited usefulness in the current design environment.

The investigation of robust optimization is driven by
several needs. The first need is for a conservative

approach that achieves a robust design in the

neighborhood of a baseline configuration. This

approach is useful to the design team that has a good

baseline design developed by traditional methods. The

second need is for an exploratory approach that

uncovers unsuspected trade-offs in the design space.
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Thisapproachcanbeusedto discovernewdesign
ideasforfuactherstudy.

Thispaperwilluseanairfoiloptimizationproblemto
illustrateandcompareseveraloptionsforoptimization
withuncertainty.Theseoptionswereimplementedin
thesamecomputercodewith thesamenonlinear
programmingtechniquesandtheyweretestedand
comparedusinga singlecomputerarchitectureand
baselinedesign. Theseconditionsfacilitatefair
comparisonsin termsof convergenceproperties,
computationalefficiencyandfinalsolutions.

Airfoil Optimization Problem

The concept of robust optimization is demonstrated

using a 2-D airfoil shape optimization problem. Hicks

and Vanderplaats studied a simplified version of this

airfoil problem in 1977. 3 They observed that

minimizing drag at a single design point had

unintended consequences at nearby oft-design points.

For example, consider Fig. 2a, reproduced from Ref. 3.

Hicks and Vanderplaats demonstrate that a direct

optimization approach that minimizes drag at one

Mach number (e.g., M 0.75) actually increases drag

at nearby Mach numbers (e.g., M 0.70). The authors

also present evidence showing that an inverse

optimization approach that adjusts the airfoil shape to

match some ideal pressure distribution will display

similar point-optimization behavior. To make this

point, the authors provide numerous pressure graphs

such as Fig. 2b. A comparison of the solid and dashed

curves of pressure (@) as a function of chord length

(x/c) indicates that the optimization procedure produces

an improved airfoil for M 0.75. In Fig. 2b, the solid

curve has a steep slope and a large change in Cp near

x/c 0.7. The dashed curve has a more gradual slope

and a smaller change in Cp. Ref. 3 also contains

pressure graphs for this optimized airfoil at oft-design

Mach numbers. These additional graphs show

undesirable characteristics such as multiple shocks.

The conclusion is that changes in airfoil shape which

are advantageous at one Mach number cause poor

performance at other Mach numbers. This result is

especially apparent for supercritical airfoil designs

because the relationship between wave drag and free

flow velocity is quite nonlinear for high subsonic

design Mach numbers.

Drela discusses this point-optimization behavior. 4 He

suggests a multi-point optimization approach for lift-

constrained drag minimization such as:
//

min wiCd(d, i,a4,) (1)
cxi,d@D i=l

subject to

( *C l d, ai, >-C l for 1 _<i -<n, (2)

where C)* is the required lift, w_ are arbitrary weights, d

is a set of m airfoil geometric design variables, C) is the

lift coefficient and Ca is the drag coefficient. Both C l

and Ca are functions of angle-of-attack c_ and free

stream Mach number M. Drela, Hicks and

Vanderplaats, Reuther et al. and other authors have

proposed variations of multi-point optimization. 3-5

Most of these studies conclude that the utility of the

solution to Eq. (1) depends upon the choice of the

weights, w,, and the number and spacing of the multiple

design points, M_. Unfortunately, there is no guarantee

that sensible selection of weights or design points will

net desirable airfoil shapes. 3'6 Moreover, several

authors suggest that if the number of design points n is

much smaller than the number of design variables (i.e.,

n<<m), the resulting airfoil will be misshapen. 3'7's

In ICASE reports by Huyse, and by Li et al., the

shortcomings of Eq. (1) are exposed and new robust

optimization algorithms are proposed. 7's The goal of

robust optimization is to find the airfoil shape that

minimizes the expected value of the drag coefficient

over a range of free stream Mach numbers, M_ _ [M_nii_

M_nax]. Fig. 3 illustrates the difference between multi-

point and robust optimization. 9 The multi-point

optimization reduces Ca at several specific M_ while a

robust optimization reduces Ca over a range of Mach

numbers. The robust optimization problem is stated:

min f Ql(d,a, M)f ag(M) dM
d@D M t* 1vl

(3)

subject to

Cz(d,a,M)=C 7 for allM, (4)

where c_ is the angle of attack that satisfies Eq. (4) for

each M, andJM is the probability density function. For

the present research, JM is a uniform distribution. See

Ref. 7 for a full discussion of the importance of JM and

for examples using nonuniform distributions.

The lift-constrained 2-D airfoil optimization problem

stated in Eqs. (3) and (4) is used to test robust

optimization approaches. A typical airfoil is shown in

Fig. 4. Twenty bounded geometric design variables, dj,

are the spline coefficients used to create a wide variety

of smooth 2-D airfoil shapes. The leading edge and

trailing edge points are fixed, but the top and bottom

surfaces can change as long as the lift constraint given

in Eq. (4) is satisfied.
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Twoattractiveoptionsfor solvingthe2-Dairfoil
problemarepresentedin recentpapersbyHuyse7and
by Li et al.8ThepresentresearchusestheEuler
inviscidCFDanalysiscode1°andthe2-Dunstructured
gridusedin Refs.7and8. Thecontributionof the
presentstudyisto comparetheavailableoptionsina
systematicway.

General Solution Strategy

In this section, a general solution strategy is proposed
and the methods of Refs. 7 and 8 are associated with

some tuning parameters in the solution strategy. In this

way, a continuum of possible methods is described and

a plan for testing and characterizing those methods is

proposed.

The general strategy consists of the following steps:

1. Select n Mach numbers.

2. Find the smallest feasible angle of attack for

each Mach number.

3. Calculate objective, constraints, and their

gradients.

4. Formulate a linear subproblem.

5. Adjust the trust region step size to achieve

predetermined improvement.

6. Solve the linear subproblem and update values

of design variables.
7. Decide whether to terminate or iterate from

step 1.

The cases compared in this paper differ from each

other in steps 1, 4, 5 and 6.

Step 1 in the general strategy can vary in the number of

Mach points selected and in the method of selection.

Reference 7 favors a random selection of Mach points

in order to avoid the point-optimization phenomena

pictured in Figs. 1-3. Reference 8 favors a fixed set of

Mach points because the convergence properties

associated with randomly selected points are difficult

to anticipate. The Mach points Mi are selected from a

range [0.7, 0.8] for all results presented in this paper.

The nominal set of points is {0.70, 0.733, 0.766, 0.80}.

Random points are generated using a random

perturbation not to exceed 0.04. The random set of

points is tested so that no two points are too close

together. The range Mi _ [0.7, 0.8] is selected because

it contains typical cruise Mach numbers for

commercial transports and because it exaggerates the

difference between the methods to be tested.

Step 2 involves a line search for the smallest value of c_

which satisfies the lift constraint at each of the selected

Mach points. This task is simplified because the

relationship between C_ and c_ is quite linear. On the

first iteration, a line search is always necessary. After

that, the values of c_ are available from the previous

iteration and are used to initialize the search. If the

Mach points are fixed, a line search is often

unnecessary. If the Mach points are randomly selected,

then a few extra CFD analyses will be needed for the
line search. Ref. 8 contains further details about the

line search.

Step 3 is the calculation of the expected value objective

function and involves an integral over Mach number.

This integral can be approximated by use of the

trapezoid rule, hermite polynomials or extra Mach

points as illustrated in Fig. 5. In general, the trapezoid

rule is used to estimate the objective function value,

and the other estimates of the integral are used in the

postprocessing assessments of the methods.

Obviously, using extra points gives a more accurate

estimate, however the computational expense can be

prohibitive. Another way to improve the estimate is to

use randomly selected points. If the design points are

reselected at the start of each iteration, then the

optimization algorithm will not be able to exploit the

integration error to improve the performance at the

design points at the expense of performance at the off-

design points (recall Fig. 3).

Step 4 involves formulating the linear subproblem. Of

all the possible solutions to the linear subproblem, we

seek the one that minimizes the objective while making

the smallest change in the design vector in a least norm

sense. Also, auxiliary constraints are imposed to avoid

potential off-design performance degradation due to

inaccuracy in numerical estimates of the expected-

value integral. The linear subproblem can be

summarized as:

min  w,c ,7
Ad,Aa /=1

(5)

subject to

Cd, , =C d,+ ,Ad + ....
' c)a, *

C_,_ff_<(1- Ymu,)Ca,*

c,, +(@,@ + ac-G'* =c7
' o_a,

(6)

(7)

(8)

and subject to

-6j _<Adj. _<6j

for l_<i_<n

for l_<j_<m (9)
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wherethenotation<a, b > indicates the dot product of

vectors a and b, _),_ is the current value of the drag
new

coefficient evaluated at the i th design point, and Cd, /

is the linear prediction to the value of Cd, _ after the

optimization step. Bounds 6j on the change in a design

variable Adj. can be either proportional to the initial
value or uniform.

This linear subproblem can be used for either multi-

point optimization or robust optimization. Robust

optimization is accomplished by including an extra

constraint (i.e., Eq. (7)) and by choosing the weights w i

based on a numerical integration formula to

approximate the integral in Eq. (3). Robust

optimization seeks a smart descent direction which

reduces each individual Ca,_and the expected value.

Step 5, the determination of trust region step size, is

crucial and requires the most explanation (see Ref. 8

for complete details). The size of each optimization

step is controlled by two tuning parameters, _/minand

_obj. The first parameter occurs in Eq. (7) and specifies

the desired decrease in Cj at each design point. The

second parameter occurs in a similar equation,

objnew = (1- 7obj)Obj (10)

where Yobj is the desired decrease in the objective, obj

is the current objective value and obj new is the linear

prediction of the new objective following the

optimization step. Since the computational cost of

solving the approximate optimization subproblem is

inexpensive compared with the cost of CFD analysis,

the subproblem can be solved with several different

values of trust region size 6 and then the final trust

region size can be adjusted to satisfy Eq. (10). In this

paper, Yobj is always a small positive number and the

optimization subproblem always attempts to find an

obj new that is smaller than obj. On the other hand, _min

can be a large negative number meaning that drag at

some M_ can increase as long as the expected value of

drag decreases. Setting Yimnto a large negative number

makes this subproblem resemble a traditional multi-

point optimization since Eq. (7) will never be an active

constraint. The details of the optimization subproblem

and the adjustment of 6 and value of Ym_ are the major

differences between the methods in Refs. 7 and 8.

Step 6 involves the solution of the approximate

optimization subproblem and the update of the design

variable values. Refs. 7 and 8 differ in this step

because the authors use different linear subproblems

and different optimization software, which makes it

very difficult to compare the two methods based on the

results in those reports. The current paper uses a

quadratic programming solver to find the least norm

solution of the linear program given in Eqs. (5)-(9).

Ideally, step 7 uses a termination criteria based on the

comparison between the predicted decrease and the

actual decrease delivered by step 6. For the purpose of

comparing options, the authors feel it is better to

compare after a fixed number of iterations for each

method. Therefore, step 7 is not implemented.

The algorithm described in steps 1-7 is very similar to

sequential linear programming, however, it has three

key unconventional elements. These elements are

employed to find a smart search direction that takes

into account the fact that only a limited amount of

information (i.e., the drag at a few design points) is

given for solving the robust optimization problem. The

unconventional elements are (1) a predetermined rate

of linearized drag reduction to ensure a proper trust

region size, (2) the auxiliary drag constraints to ensure

simultaneous drag reduction at all the design points,

and (3) the least norm solution of the linear

programming subproblem for an efficient trade-off

between the shape modification and the performance

improvement. The combination of (1) and (3) yields

smooth airfoils during optimization and prevents

severe off-design performance degradation. The

auxiliary drag constraints force the optimizer to find a

local solution with a flatter drag profile over the Mach

range.

Results

The general solution strategy facilitates testing of many

robust airfoil optimization options. For this paper, a

large number of cases were tested. Table 1 provides a

summary of cases referred to in the present paper.

Case # Yobj,% Y,_n,% # ofM i Spacing

of M_
1 3 -1000 4 fixed

2 3 1 4 fixed

3 3 2 4 fixed

4 3 3 4 fixed

5 3 - 1000 4 random

6 3 1 4 random

7 3 2 4 random

8 3 3 4 random

9 4 -1000 4 fixed

10 4 2 4 fixed

11 4 4 4 fixed

12 3 -1000 21 fixed

Table 1. Summary of options tested.
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Notethat4designpointsareusedtoestimatethearea
underthecurve,exceptforCase12whichuses21.
Sometimesthedesignpointsareevenlyspacedand
sometimestheyarerandomlyspaced.All plotsofdrag
versusMachnumbercontain24pointsregardlessof
thenumberor thespacingof M_ used during the

optimization process. Fig. 6a is an example of a drag

profile plot with 24 points. These results have been

postprocessed, which is necessary to compare solutions

and to prove that the drag is reduced over the whole
interval.

The results of these tests can be presented in many

ways. For example, Fig. 6a compares the drag profiles

of Ca versus M for Cases 4, 9, 10, and 11; Fig. 6b and

Fig. 6c compare the airfoil shapes for these same cases.

Each of these optimization cases ran for 30 iterations.

Notice that Cases 9 and 10 seem to have converged to a

similar solution while Cases 4 and 11 are quite

different in shape and in drag profiles. As shown in

Table 1, Cases 4 and 11 have Yin_l _obj" Thus, we

postulate that in Cases 4 and 11, the need to reduce

drag at each Mach number results in a different

convergence history than in Cases 9 and 10, where the

need to reduce expected value is emphasized.

Another way to look at these results is shown in Fig. 7

in which drag profiles are plotted every ten

optimization steps for Case 4. Note that convergence is

very smooth and the expected value of drag for the 50 _h

step is obviously better than the expected value of drag

for the 10 _h step.

Several conclusions can be drawn from Figs. 6 and 7.
One conclusion is that the user has control of the robust

optimization strategy. The user can be very

conservative and set _/min _/obj 0.03 and get gradual

improvement with each iteration by making small

changes to a good baseline design. Alternatively, the

user can be more aggressive and request a larger

improvement with each iteration. This choice will

cause the trust region step size to expand and will

increase the possibility that the linear subproblem is

not a good approximation to the true robust

optimization problem. However, it will also increase

the possibility of rapid convergence to a novel airfoil

shape. Thus, the user can make a trade-off between the

number of function evaluations and the level of

optimization. The second conclusion is that all choices

yield airfoil shapes that are smooth and airfoils that

reduce drag over the whole range of Mach numbers.

A third way to study the results is shown in Fig. 8

where the expected value history is plotted for Cases 2

and 6. Fig. 8 presents a traditional convergence history

of objective function versus iteration number. The

estimates of expected value are calculated with a more

accurate hermite interpolation for the integrand in Eq.

(3); that is, the area under each curve is estimated using

four values of C a and four derivatives of Cd with

respect to M i. The plot indicates that each optimization

strategy makes steady progress toward the goal of

reducing drag over a range of Mach numbers. The

progress made in Case 6 (Fig. 8b) is similar to that for

Case 2 (Fig. 8a). As seen in Table 1, the two cases are

similar except that Case 6 uses randomly chosen Mach

numbers. Fig. 8c compares the random Mach numbers
used in Case 6 with the fixed values used in Case 2.

Since the set of Mach numbers changes from iteration

to iteration, the estimates of expected value in Case 6

may be a little high in one iteration and a little low in

the next. The estimates of expected value in Case 2 are

not perfect either, but they are more consistent from

iteration to iteration.

This study contained four cases of randomly selected

Mach numbers and four similar cases with fixed Mach

numbers (see Table 1). All cases successfully reduced

the expected value of drag. For example, Fig. 9

compares the drag profiles of Case 6 with Case 2 after

30 iterations. As indicated in Fig. 9, the random and

fixed cases differ very little. However, as was seen in

Fig. 6, cases with _/min _/obj do differ somewhat from

other cases where %,_n< 0.0.

All cases were set to run for 50 iterations, and all

converged to a final expected value between 0.0003

and 0.0004. Most cases reached a value less than

0.0004 by iteration 30. A few of the cases show an odd

convergence history between iteration 30 and 50. We

believe that this is attributable to the well-known

"over-shooting" behavior of sequential linear

programming. Near the solution, the gradient of the

objective approaches zero and the effects of tiny errors

are magnified. Consequently, the optimization steps

tend to zigzag around the true solution rather than

hitting it exactly. To avoid the effects of this

zigzagging and exaggerate the differences between

cases, the results were compared at iteration 30.

However, this anomalous behavior near the end of the

optimization process reinforces our appreciation for the

excellent convergence behavior everywhere else (see

e.g., Fig. 8a). Obviously, most of the analysis and

gradient predictions provided by the CFD code 1° are

exceptionally reliable, which contributes to the success

of the robust optimization procedure.

A final comparison can be made between airfoil shapes

and their effect on the flow field as in Figs. 10 and 11.

Fig. 10 shows the original NACA-0012 baseline airfoil

compared with an optimized shape from Case 4 after

40 iterations. The vertical axis is exaggerated to show
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thattheoptimizedshapeisthinnerandmorecambered
thanthebaseline.Thissmoothoptimizedairfoilshape
isquitedifferentfromtheshapesreportedinprevious
papers(e.g.,Refs.7and8).

Fig.11comparestheeffectof theoptimizedairfoil
shapesinCase4ontheflowfield.Fig.1la showsthe
flowfieldatM 0.8 after 10 iterations and Fig. llb
shows the flow field at the same Mach number after 40

iterations. A noticeable shock boundary can be seen in

each of the figures. Notice that the shock is much

weaker in Fig. 1 lb (there are no red contours indicating

high local Mach number). Fig. 1 lc compares pressure

on the upper surface of the airfoil for Case 4; dark blue

squares indicate @ after 10 iterations and light yellow

triangles indicate @ after 40 iterations. Clearly, the

change in _ is less after 40 iterations, another

indication that the shock strength is reduced. The

results presented in Figs. 10 and 11 are typical of the

results seen for all cases. Our experience with the

general solution strategy and various choices of tuning

parameters is that all choices yield reasonable airfoil

shapes and consistent drag reduction.

Since this is essentially a multi-objective problem,

there is not one right answer. Rather, there are many

good solutions and our test cases have revealed several.

To demonstrate that the solutions are good ones, we

compare them with the traditional multi-point

solutions. For example, Case 12 uses 21 evenly spaced

design points and sets _minto a large negative number.

Thus, Case 12 resembles a multi-point optimization

problem where the number of Mach numbers is larger

than the number of design variables s. Such an

approach automatically reduces the area under the drag

curve by reducing drag at a large number of individual

design points (recall Fig. 5c).

Fig. 12 compares the drag profiles for Case 12 after 10

and 50 optimization iterations with the drag profile for

Case 1 after 50 iterations. Notice that the drag profiles

for Cases 1 and 12 are very similar. Yet, Case 1 uses 4

design points and Case 12 uses 21 design points. Thus,

Case 12 requires as much computational effort in 10

iterations as Case 1 requires in 50 iterations. Fig. 12

provides convincing evidence that the robust

optimization methods presented in this paper produce

good solutions in an efficient manner.

The robust optimization strategy has been

demonstrated for an optimization problem with one

uncertain parameter, cruise Mach number. The authors

believe that this strategy can be extended to problems

with several uncertain parameters. The challenge is to

evaluate the expected value integral with a limited

number of expensive disciplinary analyses. One

approach is to screen the candidate uncertain

parameters and fix the values of those parameters with

a less significant effect on the objective and

constraints. Another approach is to use an efficient

sampling scheme such as Latin hypercubes. These

approaches should be successful as long as the multiple

uncertain parameters are not correlated.

Conclusions

This paper uses a 2-D airfoil optimization problem to

illustrate and compare several options for optimization

with uncertainty. These options are implemented in the

same computer code with the same nonlinear

programming techniques. All options proved to be

viable for the test problem. Since the initial airfoil is a

poor choice for the Mach range specified, all options

significantly improved the design. Some options seek

a robust design in the neighborhood of a baseline

configuration, while others seek unexploited trade-offs

in the design space. Thus, the test cases converged to

several candidate airfoil designs depending on the

optimization options selected.

This study illustrates several important lessons about

robust optimization. First, robust optimization uses a

multi-objective formulation and thus provides not one

right answer but rather lots of viable candidate designs.

Second, the key to successful robust optimization is the

choice of a smart descent direction and an adjustable

trust region size; the other options can affect the

convergence rate and the convergence path. Third, a

successful airfoil optimization must include dependable

CFD analysis and grid generation codes and accurate

predictions of gradients of the objective and

constraints.

It is concluded that robust optimization is an important

tool for multidisciplinary design. It is needed when

some of the design parameters (e.g., operating

conditions) are inherently variable, or when some of

the design specifications are uncertain (e.g., maximum

payload), or when some of the cost drivers are subject

to change in the future (e.g., fuel prices). The

importance of robust optimization increases when these

uncertain parameters have a strong nonlinear effect on

the objective function and constraints. An interesting

example of robust optimization is provided in this

application to airfoil shape optimization. In this

problem, cruise Mach number is the uncertain

operating condition with nonlinear effects on lift and

drag of the airfoil.
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Fig. 2. Comparison of baseline airfoil with modified

airfoil (MOD. 1) (from Hicks and Vanderplaats

1977).
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Fig. 3. Typical airfoil shape optimization results

show weakness of multi-point optimization compared

with robust optimization (from Huyse et. al. 2002).

Fig. 4. Airfoil showing angle of attack and typical

bounds on spline control points.
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5a. Trapezoid rule using 4 selected Mach points.
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5b. Hermite spline using 4 selected Mach points.
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5c. Trapezoid rule using 24 Mach points.

Fig. 5. Evaluation of integral needed to calculate

expected value of drag coefficient.
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6a. Post analysis of &rag profiles for four different
cases after 3 0 iterations.
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6b. Airfoil shapes from Cases 9 and 10 are essentially
the same after 30 iterations.
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6c. Airfoil shapes from Cases 4 and 11 after 30

iterations.

Fig. 6. Comparison of solutions for Cases 4, 9, 10,
and 11.
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Fig. 7. Optimization convergence history of drag

profiles for Case 4.
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8a. Case 2 uses four fixed design points.
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8b. Case 6 uses four random design points.
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each iteration.

Fig. 8. Convergence history showing decrease in the

expected value of C a with iteration number.
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Fig. 9. Comparison of drag profiles for Cases 2 and 6
after 30 iterations.
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Fig. 10. Comparison of baseline and optimized

airfoil shapes.
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11 a. Mach contours Case 4 after 10 iterations
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Fig. 11. Comparison of local Mach contours and @
curves for Case 4.
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Fig. 12. Comparison of Case 1 (4 design points) and

Case 12 (21 design points).
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